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Confounding in Air Pollution Epidemiology: When Does Two-Stage
Regression Identify the Problem?
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In air pollution epidemiology studies, evalu-
ating modeled associations between individ-
ual pollutants and the health outcome of
concern is often complicated by multi-
collinearity among the measured pollutant
concentrations. Statistical models that incor-
porate these copollutants simultaneously are
often unstable, with the estimated regression
coefficients possibly changing in both mag-
nitude and direction depending on which
copollutants are included. Further, coeffi-
cient standard errors will likely be inflated so
that the estimated effects may not achieve
statistical significance, despite actual rela-
tionships that may exist. Conversely, if sin-
gle-pollutant models are used to evaluate
potential associations, the problem of con-
founding arises: the single pollutant repre-
sents not only its own health effect but also
the effects of the excluded pollutants with
which it is associated.

Several authors (1–3) have recently
applied two-stage regression techniques in an
effort to identify the extent to which a pollu-
tant is directly associated with human health
effects, as opposed to acting indirectly
through its association with other pollutants
(confounding). Noting that relationships
between copollutants differ by city, it has
been proposed that such differences can
facilitate the separation of direct and indirect
effects through use of a second-stage meta-
regression. When the first- and second-stage
models have been correctly specified, the
proposed approach may help clarify the role
that confounding plays in observed associa-
tions between pollutants and health out-
comes. In this paper we describe some

general conditions under which the method
may, however, be vulnerable to the effects of
model misspecification.

In the applications described by Schwartz
and colleagues (1–3), the response variable
denoted by Y is most often a community-
level health index, such as the number of
deaths or number of hospital admissions per
day (possibly transformed), rather than an
individual-level health index. In reality, Y
may have a Poisson or hyper-Poisson distrib-
ution, but the examples discussed below are
not affected by such distributional proper-
ties. The variables W, X, and Z usually rep-
resent community-level indices of airborne
particles or gaseous pollutants averaged over
one or more stationary air monitoring sta-
tions. However, the two-stage method used
in earlier papers (1–3) could potentially be
applied over a much wider range of epi-
demiology studies, including those with
individual-level health effects and exposure
data.

Mathematical Model for the
Two-Stage Method
We express the mathematical model for the
two-stage approach to evaluating confound-
ing using nonspecific variables to illustrate
the generality of the problem. The simplest
setting involves copollutant variables
denoted by Z and X and a health outcome
variable denoted by Y. The variables Z and
X are known to be associated with each
other, and one or both may be directly asso-
ciated with Y. Following the approach of
Schwartz (3), a model characterizing these
relationships may be expressed as:

X = γ0 + (γ1,city × Z) + εX [1]

Y = β0 + (β1 × Z) + (β2 × X) + εY. [2]

Thus, in our simple model, associations are
linear and characterized parametrically. We
assume that one “instance” of the system
embodied in Equations 1 and 2 will be used
to represent each city 1,...,K in a multicity
analysis. The parameters β1 and β2 charac-
terize the direct associations of Z with Y and
X with Y, respectively. The parameter γ1,city
characterizes the association between Z and
X. While β1 and β2 are assumed constant
across cities, γ1,city varies from city to city as
the relationship between Z and X varies from
city to city. The intercept terms γ0 and β0
may or may not depend on the city. The
analyses below do not depend on city-spe-
cific values for these parameters, and for sim-
plicity, they are assumed to be the same for
all cities. Equation 1 is used to represent the
association between Z and X for each city,
one of many possible ways of expressing
such associations but consistent with the
approach described by Schwartz (3). In
Equation 2 the variable Y is a response or
health effect (such as the logarithm of mor-
tality) that depends directly on Z as well as
indirectly on Z, acting through X as a surro-
gate or proxy. By substituting Equation 1
into Equation 2, we have:

Y = β0 + (β1 × Z) + β2
× [γ0 + (γ1,city × Z) + εX] + εY
= [β0 + (β2 × γ0)] + [β1 + (β2 × γ1,city)] × Z
+ (β2 × εX )+ εY. [3]

The total Z effect is the regression coefficient
of Y on Z, which from Equation 3 is

Z effectcity = β1 + (β2 × γ1,city) [4]

for each city = 1,...,K. This total effect reflects
both the direct and indirect associations
between Z and Y.
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relates a putative confounding variable to PM. In the second stage of the analysis, the estimated
city-specific regression slopes for the health-effect-versus-PM model are regressed against the esti-
mated city-specific regression slopes for the confounder-versus-PM model. Under the proposed
method, a nonzero intercept estimate in the second-stage regression would be interpreted as indi-
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Equation 3 motivates the two-stage
regression approach. Assuming that data on
Z, X, and Y are available for city = 1,...,K,
the two-stage regression process involves first
estimating the marginal association between
Y and Z using a first-stage regression model
of Y against Z for each city, ignoring X.
Consistent with the usual problems associ-
ated with model misspecification detailed in
the regression literature (4) we anticipate
that Z will also represent the effect of X and
that we will recover estimates which in
expectation should conform to

E[Ẑ effectcity] = β1 + (β2 × γ1,city) [5]

for city = 1,…,K. Thus, the expected Z
effects are based on parameters reflecting
both the direct effect of Z on Y (character-
ized by the parameter β1) and the mediated
effect of Z on Y acting through X (character-
ized by the parameters β2 and γ1,city). It is
therefore of interest to further extract esti-
mates of β1 and β2, and this is accomplished
using a second-stage regression. To carry out
the second-stage regression, estimates of
γ1,city for city = 1,...,K are needed in addition
to the estimated Z effects already obtained
during the first stage. The estimates of γ1,city
are obtained by fitting Equation 1 for each
city. The second stage then consists of a
regression of the estimated Z effects (i.e.,
Ẑ effectcity for city = 1,...,K) against the esti-
mated X with Z associations (i.e., γ̂1,city, for
city = 1,...,K). Equivalently, the second stage
consists of a regression of the estimates of
the linear combinations β1 + (β2 × γ1,city)
against estimates of the parameters γ1,city in
an effort to estimate β1 and β2. The second-
stage regression results in the fitted model:

Ẑ̂ effectcity = δ̂1 + (δ̂2 × γ̂1,city). [6]

When there is sufficient variation in the para-
meters γ1,city across cities, the claim is that δ̂1
provides an estimate of β1 and that δ̂2 pro-
vides an estimate of β2. By way of these esti-
mates it should be possible to separate the
component of the Z effect due to direct asso-
ciation of Z with Y (by virtue of the esti-
mated intercept δ̂ 1 in the second-stage
regression) from the component due to indi-
rect association through an intermediate vari-
able (by virtue of the estimated slope δ̂2 in
the second-stage regression). In particular, a
near-zero estimate for the second-stage inter-
cept suggests that there is no direct associa-
tion between Z and Y, whereas a nonzero
(generally positive) intercept estimate is con-
sistent with a direct association between Z
and Y. Similarly, a near-zero estimate for the
second-stage slope suggests absence of any
indirect association between Z and Y,
whereas a nonzero (generally positive) slope

estimate suggests an indirect association
between Z and Y (confounding). If the esti-
mated second-stage intercept is positive and
the estimated slope is close to zero, then the
two-stage approach described by Schwartz
and colleagues (1–3) would imply an associa-
tion of Z with Y primarily through a direct
pathway (i.e., statistical associations between
Z and Y would not be substantially attributed
to confounding).

A Class of Counterexamples
The situation becomes more complicated
with the introduction of another pollutant
variable. As before, the variable Y may be
regarded as the health outcome. The variables
X and Z, and a new variable W, represent pol-
lutants. Suppose now that Z is not directly
associated with the outcome Y and is only
indirectly associated through X and W.
Moreover, both X and W are assumed to have
associations with Z that may vary from city to
city. A structural equation model analogous
to the system of Equation 1 – Equation 2 that
expresses these relationships is

X = γ0 + (γ1,city × Z) + εX [7]

W = τ0 + (τ1,city × Z) + εW [8]

Y = β0 + (β2 × X) + (β3 × W) + εY. [9]

As before, one instance of the system will be
used to represent each city. The parameters
β2 and β3, which characterize the direct rela-
tionships of Y with X and Y with W, are
treated as constant across all instances of the
system, whereas the parameters γ1,city and
τ1,city, which characterize the relationships
between Z and X and between Z and W,
respectively, are allowed to vary across
instances (cities) but are to be regarded as
constant within any instance of the system.

Assuming that Z is the variable to be
evaluated for a direct effect, the first stage of
the analysis involves a regression of Y
against Z. Again, due to model misspecifica-
tion the effects picked up should be that of
Z acting through both X and W. The first-
stage estimates of the Z effects should thus
be characterized by 

E[Ẑ effectcity] = (β2 × γ1,city) 
+ (β3 × τ1,city) [10]

for city = 1,...,K. Although the variable W is
present in the modified system, the second-
stage regression uses only one set of estimated
copollutant relationships, either X with Z
associations or W with Z associations; for con-
sistency, we assume the former. The results of
the second-stage regression will thus be
affected by the relationship (if any) between
τ1,city and γ1,city. For example, suppose that

τ1,city = τ1 for city = 1,...,K. Then, in the sec-
ond-stage regression of estimated Z effects
against estimated X with Z associations, we
should anticipate an intercept approximating
β3 × τ1 and a slope approximating β2. If β3 ×
τ1 > 0 and β2 > 0, then we are likely to cor-
rectly conclude that Z has an indirect effect
on Y (confounding), but incorrectly con-
clude that Z also has a direct effect on Y.
The reason that a zero intercept would not
be expected is that the confounding mecha-
nism involves two intermediaries, with Z
acting through one of them in varying pro-
portion over cities, and through the other in
constant proportion (absent the error terms).
More generally, suppose that

τ1,city = η0 + (η1 × γ1,city) [11]

for city = 1,...,K. By substitution of Equation
11 into Equation 10, it follows that the
expected Z effects from the first-stage regres-
sion are given by

E[Ẑ effectcity] = (β3 × η0) 
+ [β2 + (β3 × η1)] 
× γ1,city. [10´]

The second-stage regression can then be
expected to yield an intercept that approxi-
mates β3 × η0 and a slope that approximates
β2 + (β3 × η1). The two-stage method would
likely lead to the incorrect conclusion that
both indirect and direct Z effects exist and
would also incorrectly estimate the magni-
tude of the Z-to-X-to-Y pathway.

Simulations

We developed a program using SAS software
(SAS Institute Inc., Cary, NC) that simulates
data for a system which fits into the class of
models described by Equations 7–9. The
simulation is carried out for K = 10 cities and
N = 100 observations (days) per city under
the following parameter settings:

γ0 = 100; γ1,city = 0.05, 0.15,..., 0.95 
successively for city = 1,...,K

τ0 = 100; τ1,city = η0 + (η1 × γ1,city) 
= 0.5 + (0.05 × γ1,city) for city = 1,...,K

β0 = 100; β2 = 0.3; β3 = 1.0.

Positive values were assigned to the intercept
terms to minimize generation of negative
quantities during simulation; however, the
intercepts do not play an essential role in the
analysis. Note that the relationship between
τ1,city and γ1,city is relatively flat, so that τ1,city
is nearly constant with respect to γ1,city. For
simplicity, the variable Z is simulated
according to a normal distribution: 

Z ~ N(100,252).

Each simulated value of Z is substituted into
Equations 7 and 8 to obtain the systematic
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components of X and W. The values for X
and W are completed with the addition of
error terms εX and εW, simulated according
to normal distributions:

εX ~ N(0, 202)

εW ~ N(0, 202).

The values for X and W are then substituted
into Equation 9 to obtain the systematic
component of Y. The value for Y is com-
pleted by addition of the error term εY,
which is simulated according to a normal
distribution:

εY ~ N(0, 202).

The simulation structure for Z, εX, εW, and
εY does not incorporate any dependencies, so
that effectively variables are independent and
for simplicity the time-series values are free
of serial correlation. The magnitude of the
error terms was selected to introduce enough
randomness to make the simulation and esti-
mation process meaningful while retaining
substantial collinearity between Z, X, and W.

After the data have been simulated, the
first-stage and second-stage regressions are
performed with the variable W omitted from
the analysis. Referring to Equation 10´ we
anticipate that the second-stage intercept δ̂1
should approximate β3 × η0 = 0.5 and that
the slope estimate δ̂2 should approximate β2
+ (β3 × η1) = 0.35. 

The complete simulation was replicated
1,000 times. Over all simulations, the 

second-stage intercept estimate δ̂1 had a
mean value of 0.498 (SD = 0.073) and the
second-stage slope estimate δ̂2 had a mean
value of 0.351 (SD = 0.125). On average,
therefore, we recovered parameter estimates
that conform to the underlying model struc-
ture. Moreover, the reported standard devia-
tions indicate that nonpositive estimates of
either the second-stage intercept or the sec-
ond-stage slope would be rare.

Figure 1 shows an example of the results
obtained in a single simulation run. This par-
ticular replication was selected for display
because the second-stage regression recovered
intercept and slope estimates close to the
underlying quantities β3 × η0 and β2 + (β3 ×
η1). Based on the two-stage analysis, the
(incorrect) conclusion would be that Z has a
direct pathway to Y and also a comparatively
weak indirect pathway to Y. Hence, the com-
plete confounding of Z is largely obscured.

Discussion

We have shown that two-stage regression
approaches cannot necessarily be trusted in
scenarios where a third factor, such as
another air pollutant, may also play a role.
Although the class of counterexamples pre-
sented is based on one particular model,
many variations are possible. For example,
introducing a direct association between Z
and Y produces a new model that supports
additional counterexamples. Depending on
the parameters that characterize the relation-
ships between variables in this revised model,
different outcomes would be expected using
the two-stage regression approach. In partic-
ular, if Z and the omitted variable W vary
inversely, the direct effect of Z on Y could be
partially or totally obscured. Hence the bias
can go in either direction. More complicated
examples involving multiple variables that
are omitted from the estimation process can
also be constructed, but such examples
appear to offer little additional insight.

Samet et al.’s Figure 33 (1) and Schwartz’s
Figure 4 (3) are consistent with the hypothe-
sis that the estimated PM10 (particluate mat-
ter < 10 µm in aerodynamic diameter)
effects for hospital admissions and mortality,
respectively, are not strongly confounded
with sulfur dioxide and ozone. These figures
are also not inconsistent with the hypothesis
that the PM10 effect is due to another
excluded air pollutant through mechanisms
similar to those in the class of counterexam-
ples presented above. Without necessarily
subscribing to the logic of direct and indirect
pathways implied by such models, the vari-
able (PM10) to be tested for confounding
using the proposed methodology must
nonetheless enter the analysis as the explana-
tory variable Z in the first-stage analysis. The
two-stage models discussed in this paper,

therefore, appropriately describe the type of
models employed in the confounding analy-
ses in previous reports (1–3).

In practice, multicollinearity is most
effectively evaluated on the basis of entire
correlation structures (e.g., as opposed to
pairwise correlations), and factor analysis
may be useful for this purpose. Published
results providing adequate details on correla-
tions between numerous pollutants in a mul-
ticity study, however, are not readily
available. As a surrogate in this discussion,
we consider results published by Schwartz
(2) that show the correlation matrices for
PM10, carbon monoxide, temperature, and
dew point for eight cities, but include no
other air pollutants. Factor analyses of these
four variables reveal considerable differences
among the cities. The two smallest eigenval-
ues for each city are < 0.025, indicating
strong multicollinearity among the four vari-
ables. In the four western cities (Colorado
Springs, Colorado, and Seattle, Spokane,
and Tacoma, Washington) and in New
Haven, Connecticut, the first principal com-
ponent explains 88–95% of the variation in
these data, but includes both PM10 and CO,
suggesting that these pollutants have similar
sources and that their health effects may be
difficult to separate. The second principal
component in these cities explains < 13% of
the variation, and reflects mainly the differ-
ence between PM10 and CO variations. By
contrast, in three midwestern cities (Chicago,
Illinois, and Minneapolis and St. Paul,
Minnesota), the first principal component
explains only 72–75% of the variation and
puts much less weight on PM10 variations
than on CO variations. The second principal
component in the midwestern cities explains
26–27% of the variation, with PM10 the
dominant variable, suggesting that it may be
easier to separate the effects of the two pollu-
tants in those cities than in western cities.
These results suggest not only that multi-
collinearity is a significant problem in air pol-
lution epidemiology but also that the nature
of the problem does indeed vary from city to
city. In short, the structural characteristics of
the hypothetical models underlying the two-
stage analyses reported by Schwartz and col-
leagues (1–3) and the more complicated
counterexample we describe in this paper are
quite plausible.

Factor analysis can also be useful for con-
structing alternative model inputs.
Specifically, by obtaining factors that are
often identifiable as “bundles” of closely
related pollutants and that by construction
are orthogonal, the multicollinearity prob-
lem can be largely eliminated. Although
most recent efforts of this type have focused
on factor analyses of concentrations of the
elemental components of fine particles on
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Figure 1. Results of one typical simulation run.
The vertical axis represents the estimated Z
effects and the horizontal axis represents the
estimated values of γ1,city from the first-stage
regressions. The fitted line represents the sec-
ond-stage regression. For the second stage, the
estimated intercept = 0.48 (SE = 0.050) and the
estimated slope = 0.36 (SE = 0.081). Due to omis-
sion of an important variable (W), a positive inter-
cept is estimated in the second stage and a direct
effect is mistakenly attributed to Z. 
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filters (5–8), they have also included gaseous
copollutant concentrations as variables in the
analyses. Mar et al. (6) used a factor analysis
model that included SO2, nitrogen dioxide,
and CO along with particle elements for
Phoenix, Arizona. Tsai et al. (7) used a
model that included CO and sulfate concen-
trations, along with eight metals in respirable
particles for three New Jersey cities. Özkay-
nak et al. (8) used a model with the coeffi-
cient of haze (an index of black particles) as
well as NO2 and CO and meteorologic vari-
ables for Toronto, Ontario, Canada. These
models generally identified several important
factors, or pollutant bundles, that suggested
several significant sources contributed to
urban air pollution, including motor vehicle
emissions, coal combustion, fuel oil combus-
tion, vegetative burning, resuspended road
dust, soil and crustal material, local sources
of SO2, regional sulfate sources, nonferrous
metal processing, and sea salt.

We suggest only that factor analysis is one
useful tool for evaluating multicollinearity
and is useful as a preprocessing step in regres-
sion modeling; we do not assert that it is the
best or the only alternative to the proposed

two-stage approach. A comprehensive treat-
ment of the confounding/multicollinearity
problem is beyond the scope of this paper,
but clearly deserves additional study.

In this paper, we have purposely avoided
the added complications associated with the
“errors in variables” problem (4,9). In particu-
lar, if Z is measured with error, we may antici-
pate that attenuation bias will emerge in the
first-stage regressions in situations properly
characterized by Equations 1 and 2. A com-
pletely rigorous treatment would incorporate
this aspect of modeling and estimation.
However, dealing with such concerns in the
present analysis would not appreciably alter
the general conclusions and would introduce
an unnecessary technical distraction.

Conclusion

We have given a brief background on the use
of two-stage regression as it has been applied
to the evaluation of direct and indirect associ-
ations of copollutants with human health
outcomes. Selected counterexamples show, in
simple idealized terms, mechanisms through
which such analyses can lead to erroneous
interpretations.
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